Olimpiada Brasileira de Química 2002 - FASE III

modalidade "A"

1.	"A massa de um sistema químico isolado permanecerá constante independente das reações que ne ocorram". Este enunciado está de acordo com a Lei de:								e nele		
	a) Dalton	b) Proust	c) Richte	r d)	Lavoisier	e) Gay-	Lussac			
2.	Se, em um composto de fórmula XY_5 , o elemento representado por Y é o cloro, o elemento representado por X poderá ser:										
	a) P	b) N	c) Fe	d) Ag	e) Na						
3.	Considerando que o elemento cloro tem massa atômica aproximada de 35,5 e apresenta os isótopos 35 e 37, pode-se afirmar que a abundância relativa do isótopo 37 é:										
	a) Menor que 20% b) Maior que 20% e menor que 40%										
	c) Maior que 40% e menor que 60% d) Maior que 60% e menor que 80%										
	e) Maior qu	ue 80%									
4.	As geomet	trias das r	noléculas E	SCI ₃ e PCI ₅ s	ão, resp	pectivamente:					
	a) piramida	al e penta	édrica b) tri	angular plan	a e pen	taédrica					
	c) piramida	al e bipirâı	mide de ba	se triangular	d) pirar	nidal e bipirâmid	e de base	e quadrada			
	e) triangula	ar plana e	bipirâmide	de base tria	ngular						
5.	-		ie 44 g de s imento está		o são o	btidos a partir de	20 g de	enxofre, estando o	ferro		
	a) 10 e 30	% b) 30 e 40 %	c) 40	e 50 %	d) 50 e 70)%	e) 70 e 90 %			
6.	. Assinale o conjunto que contém o elemento não metálico com maior estado de oxidação e o elemento metálico com menor estado de oxidação										
	a) SO ₃ , Xe	F ₄ e P ₂ O	5	b) SO	3, H ₂ CO	₃ e CrO ₃					
c) K ₂ Cr ₂ O ₇ , SO ₃ e MnO ₂ d) KMnO ₄ , Fe ₂ O ₃ e Na ₃ PO ₄											
	e) KClO ₃ , Na ₃ PO ₄ e CrO ₃										
7.	Qual das re	eações al	oaixo não é	uma reação	de oxi-	redução					
	2 KClO ₃ ® NH ₃ + H ₂ C										
C.	CO + 1/2 C	O ₂ ® CO ₂									
	Fe + 2 HCl $SnCl_2 + 2 I$			eCl ₂							

1 de 9

8. Se a densidade de uma mistura de gases metano e propano, apresenta a mesma densidade que o gás etano, então, a proporção entre os volumes dos gases metano e propano nesta mistura é de:									
a) 1:1	b) 1:2	c) 1:3	d) 2:1	е) 3:1				
					e número atômico 11 terminaria em:	6. A configuraçã	io eletrônica		
a) p ¹	b) p ²	c) p ³	d) p ⁴	e)	p ⁵				
10. Quando misturamos 1L de uma solução de ácido clorídrico que apresenta pH igual a 1, com 1L de uma outra solução do mesmo ácido de pH igual a 3, obtemos uma nova solução cujo pH será igual a:									
a) 1,0	b) 1,3	c) 2,0	d) 2,6	e)	3,0				
11. A reaç	ão abaixo, r	representa um	processo de	obtenção	de bicarbonato de só	ódio:			
		NaCl	+ NH ₃ + CO ₂ ·	+ H ₂ O ®	NaHCO ₃ + NH ₄ Cl				
			e sódio através reagente limita		orocesso, são mistura i:	das massas igu	ais de NaCl,		
a) a água de amônia	b) o an	noníaco d) o gás carbôr	nico	d) o cloreto de sódio		e) o cloreto		
		s de gases cit de átomos:	adas a seguir,	todas o	cupando o volume de	1 litro, assinale	aquela que		
a) Metano	o, a 300 K e	1 atm		b) Neć	b) Neônio, a 273 K e 760 torr				
c) Oxigênio, a 27° C e 760 mmHg					d) Monóxido de carbono, em CNTP				
e) Dióxido de carbono, a 0 ° C e 2 atm									
13. Que pa	-	es produzirá ι	ım tampão de	pH men	or que 7, quando volu	mes iguais desta	as soluções		
a) HCl 0,10	mol/L e Na(CI 0,10 mol/L		b) HC	l 0,10 mol/L e NaOH	0,05 mol/L			
c) HCI 0,05	mol/L e CH;	₃ CO ₂ ¯Na ⁺ 0,1	0 mol/L	d) NH	d) NH ₃ 0,05 mol/L e NH ₄ $^+$ Cl $^-$ 0,05 mol/L				
e) NH ₃ 0,05	mol/L e CH	l₃CO2¯Na ⁺ 0,ι	05 mol/L						
14. A 500)° C, NO rea	ge com Cl ₂ , p	ara formar NC	CI, segu	ndo a reação:				
2 NC	$2 \text{ NO} + \text{Cl}_2 2 \text{ NOCl K}_c = 2.1 \times 10^3$								
Em c	Em qualquer mistura destas três espécies, em equilíbrio, podemos afirmar que:								

2 de 9 01/11/12 11:12

c. A concentração de NOCl será exatamente 2100 vezes o produto das concentrações de NO e Cl₂

a. A concentração de pelo menos uma das espécies, NO ou Cl₂, será muito maior que a concentração de NOCl
b. A concentração de pelo menos uma das espécies, NO ou Cl₂, será muito menor que a concentração de NOCl

- d. A concentração de ambos, NO e Cl₂, será muito maior que a concentração de NOCI
- e. A concentração de ambos, NO e Cl₂, será muito menor que a concentração de NOCI
- 15. Quando se mistura 200 mL de uma solução a 5,85% (m/v) de cloreto de sódio com 200 mL de uma solução de cloreto de cálcio que contém 22,2 g do soluto e adiciona-se 200 mL de água, obtém-se uma nova solução cuja concentração de íons cloreto é de:
 - a) 0,1 mol/L
- b) 0.2 mol/L
- c) 1,0 mol/L
- d) 2,0 mol/L
- e) 3,0 mol/L
- 16. Uma mistura de NaBr e KBr, pesando 0,325 g, foi dissolvida em água e tratada com solução de nitrato de prata, em quantidade suficiente para precipitar todo o bromo na forma de brometo de prata. O precipitado, após seco, pesou 0,564 g. Podemos então afirmar que a razão entre o número de moles de NaBr e KBr, na mistura inicial era de.
 - a) 1:1
- b) 1:2
- c) 1:3
- d) 2:1
- e) 3:1
- 17. Uma das maneiras de recuperar ouro a partir de seus minérios é a dissolução em solução de cianeto em presença de oxigênio, segundo a equação química, <u>não balanceada</u>, mostrada a seguir:

$$Au(s) + NaCN(aq) + O_2(g) + H_2O(l)$$
 ® $NaAu(CN)_2(aq) + NaOH(aq)$

O somatório dos coeficiente obtidos após o balanceamento desta equação será:

- a) Menor que 10
- b) Maior que 10 e menor que 14
- c) Maior que 14 e menor que 18
- d) Maior que 18 e menor que 22

- e) Maior que 22
- 18. As primeiras energias de ionização (E. I., em KJ/mol) de um elemento são dadas na tabela abaixo.

1 ^a . E.I.	2 ^a . E.I.	3 ^a . E.I.	4 ^a . E.I.	5 ^a . E.I.	6 ^a . E.I.
738	1450	7730	10500	13600	18000

Qual é o número de elétrons na camada mais externa de um átomo deste elemento?

- a) 2
- b) 3
- c) 4
- d) 5
- e) 6
- 19. A partir das entalpias das reações dadas abaixo:

$$2 \text{ C(grafite)} + 2 \text{ H}_2 \text{ } \otimes \text{ C}_2\text{H}_4\text{(g)} \text{ DH}^\circ = + 52,0 \text{ kJ}$$

$$C_2H_4Cl_2(g) \otimes Cl_2(g) + C_2H_4(g) DH^\circ = + 116,0 \text{ kJ}$$

Podemos concluir que a entalpia molar de formação (em kJ/mol) do C₂H₄Cl₂(g), será igual a:

- a) 64 kJ/mol
- b) + 64 kJ/mol
- c) 168 kJ/mol
- d) + 168 kJ/mol
- e) + 220 kJ/mol
- 20. O cobre-64 é usado na forma de acetato de cobre(II), no tratamento de tumores cerebrais. Se a meia –vida desse radioisótopo é de 12,8 horas, a quantidade que restará, após 2 dias e 16 horas, de uma amostra com 15,0 mg de acetato de cobre (II) estará entre:
 - a) 0,1 e 0,5 mg
- b) 0,5 e 1,0 mg
- c) 1,0 e 2,0 mg
- d) 2,0 e 3,0 mg
- e) 3,0 e 5,0 mg

21. Explosivos produzem, em geral, um grande volume de gases como produtos. A nitroglicerina detona de acordo com a seguinte reação:

$$2 C_3H_5N_3O_9(I) \otimes 6 CO_2(g) + 3 N_2(g) + 5 H_2O(g) + \frac{1}{2} O_2(g)$$

Se 1 g de nitroglicerina sofre uma explosão, o volume de gases produzidos, se a pressão total é de 1 atm e a temperatura 500 ° C será de:

- a) 1 L
- b) 2 L
- c) 3 L
- d) 4 L
- e) 5 L

22. Considere as seguintes soluções aquosas:

Solução A = contém 0,10 moles de NaCl por 1000 g de solvente

Solução B = contém 0,10 moles de sacarose por 1000 g de solvente

Solução C = contém 0,080 moles de CaCl₂ por 1000 g de solvente

Assinale a opção na qual estas soluções estão citadas em ordem crescente de ponto de ebulição

- a) A, B, C
- b) A, C, B
- c) B, A, C
- d) B, C, A
 - e) C, A, B

23. Moléculas de butadieno (C₄H₆) podem acoplar para formar C₈H₁₂. A expressão da velocidade para esta reação é: V = k[C₄H₆]², e a constante de velocidade estimada é 0.014 L/mol.s. Se a concentração inicial de C₄H₆ é 0,016 mol/L, o tempo, em segundos, que deverá se passar para que a concentração decaia para 0,0016 mol/L, será da ordem de:

- a) 10^{-2} b) 10^{-1} c) 10^{2} d) 10^{3} e) 10^{4}

24. A nicotina (Nic), C₁₀H₁₄N₂, contém, em sua molécula, dois átomos nitrogênios básicos, que reagem com água pára formar uma solução básica:

$$Nic(aq) + H2O(I)$$
 <---> $NicH^+(aq) + OH^-(aq)$

$$NicH^{+}(aq) + H_{2}O(I) < ---> NicH_{2}^{2+}(aq) + OH^{-}(aq)$$

Sendo K_{b1} é 7,0 X 10^{-7} e k_{b2} é 1,1 x 10^{-10} , o pH aproximado de uma solução 0,20 mol/L de nicotina será:

- a) 8
- b) 9
- c) 10
- d) 11
- e) 12

25. A reação básica que ocorre em uma cela na qual Al₂O₃ e sais de alumínio são eletrolisados é:

$$Al^{3+} + 3e^{-}$$
 ® Al(s)

Se a cela opera a 5,0 V e 1,0 x 10⁵ A, quantos gramas de alumínio metálico serão depositados em 8 horas de operação da cela?

- a) 27 kg
- b) 85 kg
- c) 180 kg
- d) 270 kg
- e) 540 kg

Dados: Constante dos Gases = 8,314 J/K.mol; 0,082 atm/K.mol Constante de Faraday = 96.500 C

Olimpiada Brasileira de Química 2002 - FASE III

modalidade "B"

"A massa de um sistema químico isolado permanecerá constante independente das reações ocorram". Este enunciado está de acordo com a Lei de:								s reações que nele	
	a) Dalton	b) Proust	c) Ri	chter	d) La	voisier	e) Gay-Lussac		
2.	Assinale o c				nto não m	netálico con	n maior estado de oxid	dação e o elemento	
	a) SO ₃ , XeF	4 e P ₂ O ₅		b) SO ₃	, H ₂ CO ₃	e CrO ₃			
	c) K ₂ Cr ₂ O ₇ ,	SO ₃ e Mn	02	d) KMn	O ₄ , Fe ₂ C	3 e Na ₃ PO	4		
	e) KClO ₃ , Na	a₃PO₄ e C	rO ₃						
3.	Qual das rea	ações abai	xo não é u	ma reaç	ão de ox	i-redução			
	a) 2 KClO ₃ (® 2 KCl + 3	3 O ₂	b) NH ₃	+ H ₂ O ®	NH ₄ OH			
	c) CO + 1/2	O ₂ ® CO ₂		d) Fe +	2 HCI ®	FeCl ₂ + H ₂			
	e) SnCl ₂ + 2	? FeCl ₃ ® S	SnCl ₄ + 2 F	eCl ₂					
4.				_			apresenta a mesma o etano e propano nest		
	a) 1:1 b)	1:2 c	:) 1:3	d) 2:′	1	e) 3:1			
5.							ue apresenta pH igual uma nova solução cu		
	a) 1,0	b) 1,3	c) 2,0		d) 2,6	e) 3,0			
6.	Dentre as amostras de gases citadas a seguir, todas ocupando o volume de 1 litro, assinale aquela que contém o maior número de átomos:								
	a) Metano, a	a 300 K e 1	atm	k	b) Neônio, a 273 K e 760 torr				
	c) Oxigênio, a 27° C e 760 mmHg			9	d) Monóxido de carbono, em CNTP				
	e) Dióxido d	e carbono,	a0°Ce	2 atm					
7.	Que par de soluções produzirá um tampão de pH menor que 7, quando volumes iguais destas soluções forem misturados:								
	a) HCl 0,10	mol/L e Na	aCl 0,10 m	ol/L	b) HCl 0,10 r	mol/L e NaOH 0,05 m	ol/L	

5 de 9 01/11/12 11:12

- c) HCl 0.05 mol/L e CH₃CO₂ Na⁺ 0.10 mol/L
- d) NH₃ 0,05 mol/L e NH₄ +Cl = 0,05 mol/L
- e) NH₃ 0,05 mol/L e CH₃CO₂ Na⁺ 0,05 mol/L
- 8. A 500° C, NO reage com Cl₂, para formar NOCl, segundo a reação:

$$2 \text{ NO} + \text{Cl}_2$$
 <---> 2 NOCI $K_c = 2.1 \times 10^3$

$$K_c = 2.1 \times 10^3$$

Em qualquer mistura destas três espécies, em equilíbrio, podemos afirmar que:

- a. A concentração de pelo menos uma das espécies, NO ou Cl2, será muito maior que a concentração de NOCI
- b. A concentração de pelo menos uma das espécies, NO ou Cl₂, será muito menor que a concentração de NOCI
- c. A concentração de NOCI será exatamente 2100 vezes o produto das concentrações de NO e Cl₂
- d. A concentração de ambos, NO e Cl₂, será muito maior que a concentração de NOCI
- e. A concentração de ambos, NO e Cl₂, será muito menor que a concentração de NOCI
- 9. Quando se mistura 200 mL de uma solução a 5,85% (m/v) de cloreto de sódio com 200 mL de uma solução de cloreto de cálcio que contém 22,2 g do soluto e se adiciona 200 mL de água, obtém-se uma nova solução cuja concentração de íons cloreto é de:
 - a) 0,1 mol/L
- b) 0,2 mol/L
- c) 1,0 mol/L
- d) 2,0 mol/L
- e) 3,0 mol/L
- 10. Uma das maneiras de recuperar ouro a partir de seus minérios é a dissolução em solução de cianeto em presença de oxigênio, segundo a equação química, não balanceada, mostrada a seguir:

$$Au_{(s)} + NaCN_{(aq)} + O_{2(q)} + H_2O_{(l)}$$
 ® $NaAu(CN)_{2(aq)} + NaOH_{(aq)}$

O somatório dos coeficiente obtidos após o balanceamento desta equação será:

- a) Menor que 10
- b) Maior que 10 e menor que 14
- c) Maior que 14 e menor que 18
- d) Maior que 18 e menor que 22

- e) Maior que 22
- 11. As primeiras energias de ionização (E. I., em KJ/mol) de um elemento são dadas na tabela abaixo.

1 ^a . E.I.	2 ^a . E.I.	3 ^a . E.I.	4 ^a . E.I.	5 ^a . E.I.	6 ^a . E.I.
738	1450	7730	10500	13600	18000

Qual é o número de elétrons na camada mais externa de um átomo deste elemento

- a) 2
- b) 3
- c) 4
- d) 5
- e) 6
- 12. A partir das entalpias das reações dadas abaixo:

$$2 C_{(qrafite)} + 2 H_2 \otimes C_2 H_{4(q)}$$
 DH° = + 52,0 kJ

$$DH^{\circ} = + 52.0 \text{ kJ}$$

$$C_2H_4Cl_{2(g)} \otimes Cl_{2(g)} + C_2H_{4(g)}$$
 DH° = + 116,0 kJ

$$DH^{\circ} = + 116,0 \text{ k}$$

Podemos concluir que a entalpia molar de formação (em kJ/mol) do C₂H₄Cl_{2(q)}, será igual a:

a) - 64 kJ/mol

b) + 64 kJ/mol

c) - 168 kJ/mol

d) + 168 kJ/mo

e) + 220 kJ/mol

13. O cobre-64 é usado na forma de acetato de cobre(II), no tratamento de tumores cerebrais. Se a meia -vida desse radioisótopo é de 12,8 horas, a quantidade que restará, após 2 dias e 16 horas, de uma amostra com 15,0 mg de acetato de cobre (II) estará entre:

a) 0,1 e 0,5 mg b) 0,5 e 1,0 mg c) 1,0 e 2,0 mg

d) 2,0 e 3,0 mg

e) 3,0 e 5,0 mg

14. Explosivos produzem, em geral, um grande volume de gases como produtos. A nitroglicerina detona de acordo com a seguinte reação:

$$2 C_3H_5N_3O_9(I) \otimes 6 CO_2(g) + 3 N_2(g) + 5 H_2O(g) + \frac{1}{2} O_2(g)$$

Se 1 g de nitroglicerina sofre uma explosão, o volume de gases produzidos, se a pressão total é de 1 atm e a temperatura 500 ° C será de:

a) 1 L b) 2 L

c) 3 L

d) 4 L

e) 5 L

15. Considere as seguintes soluções aguosas:

Solução A = contém 0,10 moles de NaCl por 1000 g de solvente

Solução B = contém 0,10 moles de sacarose por 1000 g de solvente

Solução C = contém 0,080 moles de CaCl₂ por 1000 g de solvente

Assinale a opção na qual estas soluções estão citadas em ordem crescente de ponto de ebulição

a. A. B. C

b) A. C. B

c) B. A. C

d) B, C, A e) C, A, B

16. A nicotina (Nic), C₁₀H₁₄N₂, contém, em sua molécula, dois átomos nitrogênios básicos, que reagem com água para formar uma solução básica:

$$Nic_{(aq)} + H_2O_{(I)}$$
 <---> $NicH^+_{(aq)} + OH^-_{(aq)}$

$$NicH^{+}_{(aq)} + H_{2}O_{(I)}$$
 <---> $NicH_{2}^{2+}_{(aq)} + OH^{-}_{(aq)}$

Sendo $K_{b1}
in 7,0 imes 10^{-7}
in k_{b2}
in 1,1 imes 10^{-10}, o pH aproximado de uma solução 0,20 mol/L de nicotina será:$

a) 8 b)9 c)10

d)11

e)12

17. A reação básica que ocorre em uma cela na qual Al₂O₃ e sais de alumínio são eletrolisados é:

$$AI^{3+} + 3e^{-} \otimes AI_{(s)}$$

Se a cela opera a 5,0 V e 1,0 x 10⁵ A, quantos gramas de alumínio metálico serão depositados em 8 horas de operação da cela?

a) 27 kg

b) 85 kg

c) 180 kg

d) 270 kg

e) 540 kg

18. A 1800 K, oxigênio dissocia "levemente" em seus átomos

$$O_2(g)$$
 <---> $O(g)$ Kp = 1,7 x 10⁻⁸

Se você toma 1,0 mol de O2 em um recipiente de 10 L e aquece a 1800 K, o número de átomos de oxigênio [O(g)] que estarão presentes no frasco, será da ordem de:

- a) 10^{17} b) 10^{19} c) 10^{21} d) 10^{23} e) 10^{25}
- 19. A pressão parcial de O2 no ar é 158 mmHg, a 25 ° C e a pressão total do ar é 760 mmHg. O ar que é expirado do pulmão após a respiração tem uma pressão parcial de O2 igual a 115 mmHg, sob as mesmas condições. Quantos moles de O2 são absorvidos pelo pulmão a partir de um 1L de ar?

a)
$$2.3 \times 10^{-3}$$
 b) 4.6×10^{-3} c) 2.3×10^{-2} d) 4.6×10^{-2} e) 6.9×10^{-2}

20. A aureomicina (estrutura abaixo) é um antibiótico produzido por um fungo e de largo uso no tratamento de infecções.

A partir da análise da estrutura acima, podemos afirmar que o número de hidrogênios presentes em uma molécula de aureomicina é igual a:

- a) 20
- b) 21
- c) 22
- d) 23
- e) 24

- 21. Na molécula da aureomicina (estrutura mostrada na questão anterior), observa-se a presença de, dentre outras, as seguintes funções:
 - a) amina secundária, álcool terciário e cetona
- b) amida, amina terciária e álcool secundário
- c) aldeído, amina terciária e álcool terciário
- d) fenol, amida e amina secundária

- e) cetona, fenol e amina terciária
- 22. Ainda com relação à aureomicina, podemos afirmar que o número de estereoisômesos possíveis para a sua estrutura é igual a:
 - a) 16
- b) 32
- c) 64
- d) 128
- e) 256
- 23. Um b-ceto-éster sofre hidrólise em meio ácido produzindo um b-ceto-ácido que por sua vez sofre descarboxilação dando origem a:
 - a) um éter
- b) um álcool
- c) um aldeído
- d) uma cetona
- e) um anidrido
- 24. Para reduzir um composto carbonílico a um álcool ou a um alcano, pode se empregar respectivamente

os seguintes reagentes:

- a. dicromato de potássio e boro-hidreto de sódio
- b. hidrogênio na presença de paládio e dicromato de potássio
- c. amálgama de zinco, em meio ácido e boro-hidreto de sódio
- d. hidreto de lítio e alumínio e hidrogênio na presença de paládio
- e. hidreto de lítio e alumínio e amálgama de zinco, em meio ácido

25. Um álcool secundário é submetido a uma reação de oxidação com trióxido de crômio e o produto obtido é submetido à reação com um reagente de Grignard e em seguida água. O produto final obtido é:

- a) um éster b) uma cetona
- c) um álcool primário d) um ácido carboxílico
- e) um álcool terciário

Dados:

Constante dos Gases = 8,314 J/K.mol; 0,082 atm/K.mol

Constante de Faraday = 96.500 C

9 de 9 01/11/12 11:12